Name	
------	--

Reteaching Page 1.3 Exponents

To show repeated multiplication, you write a number in **exponential form**. We often use exponential form when we use prime factoring and scientific notation. An exponent tells you how many times to repeat the multiplication of the base.

5³ exponent

The base, 5, is used as a factor 3 times; 5 * 5 * 5.

Let's practice by writing numbers in exponential form:

6*6*6*6	3*3*3*3*3	3*3*3
7*7	9 * 9 * 9 * 9	2*2*2*2

Let's practice by writing the **repeated** multiplication.

6 ⁴ =	4 ⁵ =
5 ³ =	2 ³ =

 2^{5} Step 1 – Write the repeated multiplication sentence. 2 * 2 * 2 * 2 * 2Step 2 – Multiply 8 * 4 = 32You can use the commutative property of multiplication if it makes the problem easier.

Let's find the value of a few expressions in exponential form.

© 2005 - Norm Mitchell (Math6.org) - All Rights Reserved

Freely reproducible for "non profit" educational purposes - visit http://www.math6.org/legal.htm for more details concerning "non profit".

Name_____

Reteaching Page 1.3a Operations with Exponents

Multiplying Exponents If the bases are the same add the exponents	Dividing Exponents If the bases are the same subtract the exponents
$6^3 * 6^3 = 6^*6^*6^*6^*6 = 6^6$	$7^8 \div 7^3 = \frac{7^*7^*7^*7^*7^*7^*7^*7}{7^*7^*7}$ There will be 5 sevens left 7^5

Let's practice!

 $3^{5} * 3^{7} = 3^{12} \qquad 5^{7} \div 5^{2} = 5^{5} \qquad 2^{3} * 2^{6} = _$ $7^{3} * 7^{5} = _ \qquad 8^{8} \div 8^{4} = _ \qquad 4^{4} \div 4^{4} = _$

When 10 is the Base

When the base is 10 the exponent tells you how many 0's to put on a 1.

 $10^2 = 10^*10 = 100 \dots$ That's a 1 with 2 zeros! $10^3 = 10^*10^*10 = 1000 \dots$ That's a 1 with 3 zeros! $10^4 = 10^*10^*10^*10 = 10,000 \dots$ That's a 1 with 4 zeros!

When 0 is the exponent the answer is always 1 10⁰ = 1 ... That's a 1 with no zeros!

 $48^0 = 1$

 $6^0 = 1$

Let's practice! $10^3 * 10^2 = 10^5 = 100,000$ $10^7 \div 10^2 = 10^5 = 100,000$ $10^2 * 10^3 = ____ = ____$ $10^3 * 10^3 = ____ = ____$ $10^5 \div 10^5 = ____ = ____$ $15^7 \div 15^7 = ____ = ____$

© 2005 - Norm Mitchell (Math6.org) - All Rights Reserved