\qquad

Reteaching Page

1.3 Exponents

To show repeated multiplication, you write a number in exponential form. We often use exponential form when we use prime factoring and scientific notation. An exponent tells you how many times to repeat the multiplication of the base.
$5^{3} \longleftarrow$ exponent
The base, 5 , is used as a factor 3 times; 5 * 5 * 5 .
Let's practice by writing numbers in exponential form:
\qquad $6 * 6 * 6 * 6$ \qquad 3 * 3 * 3 * 3 * 3
_ 3 * 3 * 3
\qquad 7 * 7 \qquad $9 * 9 * 9$ * 9 2 * 2 * 2 * 2

Let's practice by writing the repeated multiplication.
$6^{4}=$ \qquad

$$
\begin{aligned}
& 4^{5}= \\
& 2^{3}=
\end{aligned}
$$

$5^{3}=$ \qquad

2^{5}

Step 1 - Write the repeated multiplication sentence.

$$
2 * 2 * 2 * 2 * 2
$$

Step 2 - Multiply

$$
8 * 4=32
$$

You can use the commutative property of multiplication if it makes the problem easier.

Let's find the value of a few expressions in exponential form.
$5^{3}=$ \qquad $=125$
$10^{4}=$ \qquad $=$ \qquad
$3^{5}=$ \qquad $=$ \qquad $5^{2}=$ \qquad $=$ \qquad
$6^{4}=$ \qquad $=$ \qquad $12^{3}=$ \qquad $=$ \qquad
$9^{3}=$ \qquad $=$ \qquad $8^{5}=$ \qquad $=$ \qquad
\qquad

Reteaching Page

1.3a Operations with Exponents

Multiplying Exponents

If the bases are the same...
add the exponents

$$
6^{3} * 6^{3}=6^{*} 6^{*} 6^{\star} 6^{\star} 6^{*} 6=6^{6}
$$

Dividing Exponents

If the bases are the same... subtract the exponents

$$
7^{8} \div 7^{3}=\frac{7 * 7 * 7 * 7 * 7 * 7 * 7 * 7}{7 * 7 * 7}
$$

There will be 5 sevens left... 7^{5}

Let's practice!

$3^{5} * 3^{7}=3^{12}$
$5^{7} \div 5^{2}=5^{5}$
$2^{3} * 2^{6}=$ \qquad
$7^{3} * 7^{5}=$ \qquad
$8^{8} \div 8^{4}=$ \qquad
$4^{4} \div 4^{4}=$ \qquad

When 10 is the Base

When the base is 10 the exponent tells you how many 0's to put on a 1.

$$
\begin{gathered}
10^{2}=10 * 10=100 \ldots \text { That's a } 1 \text { with } 2 \text { zeros! } \\
10^{3}=10 * 10 * 10=1000 \ldots \text { That's a } 1 \text { with } 3 \text { zeros! } \\
10^{4}=10 * 10 * 10 * 10=10,000 \ldots \text { That's a } 1 \text { with } 4 \text { zeros! }
\end{gathered}
$$

When 0 is the exponent the answer is always 1
$10^{0}=1 \ldots$ That's a 1 with no zeros!

$$
\begin{gathered}
48^{0}=1 \\
6^{0}=1
\end{gathered}
$$

Let's practice!

$10^{3} * 10^{2}=10^{5}=100,000$
$10^{7} \div 10^{2}=10^{5}=100,000$
$10^{2} * 10^{3}=$ \qquad $=$ \qquad
$10^{3} * 10^{3}=$ \qquad $=$ \qquad
$10^{5} \div 10^{5}=$ \qquad $=$ \qquad
$15^{7} \div 15^{7}=$ \qquad $=$ \qquad

