\qquad

Reteaching Page

4.1 Divisibility

A number is divisible by another number if it is a true multiple of the other number (or if the division problem does not have a remainder.

24 is divisible by 3 because $24 \div 3=8$ with no remainder.
The following rules are an easy way to check for divisibility.

Divisibility Rules

2 - the number will end with a $0,2,4,6$ or 8
3 - the sum of the digits is a multiple of 3
4 - the final two digits are divisible by 4
5 - the number will end with a 5 or 0
6 - the number is divisible by both 2 and 3
9 - the sum of the digits is a multiple of 9
10 - the number will end with a 0
Apply these rules to numbers and you will be able to easily tell the factors of a number.
2468
$2-2468$ ends with an 8 so it is divisible by 2
3 - the sum of the digits is $2+4+6+8=20.20$ isn't a multiple of 3
4 - the final two digits are 68.4 * $17=68 ; 2468$ is divisible by 4
$5-2468$ ends with 8 not with a 5 or 0
6 - the number is divisible by both 2 but not 3 so it is not divisible by 6
9 - the sum of the digits is 20 which is not a multiple of 9
10 - 2468 ends with 8 not with a 0
2468 is divisible by 2 and 4
Use this chart to help you check each of the following for divisibility by $2,3,4,5,6,9$ and 10.

digit Number sum									$\mathbf{2}$
1248	15	\checkmark	\checkmark	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 0}$	Answer
111						\checkmark			$2,3,4,6$
144									
204									
240									
327									

