\qquad

Reteaching Page

7.3 - Angle Relationships

When two lines intersect, pairs of opposite angles (vertical angles) are formed. Vertical angles have the same measure which means they are congruent.

- < A and < D are vertical angles. These angles are congruent.
- $<\mathrm{B}$ and $<\mathrm{C}$ are vertical angles. These angles are congruent.

When angle share a common side, they are called adjacent.

- < A and < C share a side. These angles are adjacent.
- < B and $<\mathrm{D}$ share a side. These angles are adjacent.

Sometimes adjacent angles form a right angle or a straight angle. Because right angles and straight angles have a given measure these types of adjacent angles are special.

Complementary angles form a right angle.

- Look at the figure on the right.
- < ACB and < BCD share a side.

- Since $<$ ACD is 90°, we call $<$ ACB and $<$ BCD complementary angles.
- This is important because if you know one angle measure, you can use math to find the measure of the other angle.
o Let's say that < DCB measures 30°. You can figure out that $<$ ACB measures 60°.
o Together $<\mathrm{DCB}\left(30^{\circ}\right)+<\operatorname{ACB}\left(60^{\circ}\right)=<\operatorname{ACD}\left(90^{\circ}\right)$
Supplementary angles form a straight angle.
- Look at the figure on the right.
- < ACB and $<$ BCD share a side.

- Since $<$ ACD is 180°, we call < ACB and $<$ BCD supplementary angles.
- This is important because if you know one angle measure, you can use math to find the measure of the other angle.
o Let's say that $<$ DCB measures 40°. You can figure out that $<\mathrm{ACB}$ measures 140°.
o Together $<\mathrm{DCB}\left(40^{\circ}\right)+<\operatorname{ACB}\left(140^{\circ}\right)=<\operatorname{ACD}\left(180^{\circ}\right)$
Identify the measures of following angles.
$<\mathrm{a}=$

$90-40=$ \qquad
$<\mathrm{G}=$ \qquad
\qquad

\qquad
$180-75=$ \qquad
\qquad

Reteaching Page

7.3 - Angle Relationships

When two parallel lines are cut by a transversal several pairs of special angles are formed.

You should notice right away that we have formed several pairs of supplementary angles. We also have plenty of vertical angles - and as you know vertical angles are always congruent!

In addition we have created more special angles.

Alternate interior angles

- Interior means inside - so the interior angles are $<\mathrm{C},<\mathrm{D},<\mathrm{E}$ and $<\mathrm{F}$.
- Interior angles that are across the transversal are called alternate interior angles.
$0<\mathrm{C}$ and $<\mathrm{F}$ are alternate interior angles - look at them - you can see they are congruent.
$\mathrm{o}<\mathrm{E}$ and $<\mathrm{D}$ are alternate interior angles - look at them - you can see they are congruent.
Alternate exterior angles
- Exterior means outside - so the exterior angles are $<\mathrm{A},<\mathrm{B},<\mathrm{G}$ and $<\mathrm{H}$.
- Exterior angles that are across the transversal are called alternate Exterior angles.
$0<A$ and $<H$ are alternate exterior angles - look at them - you can see they are congruent.
$\mathrm{o}<\mathrm{B}$ and $<\mathrm{G}$ are alternate exterior angles - look at them - you can see they are congruent.

Corresponding angles

- If you examine the figure you will see that the transversal creates 2 matching figures.

0 The angles A, B, C and D correspond (or match) with the angles E, F, G and H.

- Corresponding angles are congruent because they are the twin of an angle in the other figure.
$0<A$ matches < E, they are corresponding and congruent.
$\mathrm{O}<\mathrm{B}$ matches $<\mathrm{F}$, they are corresponding and congruent.
$0<\mathrm{C}$ matches < G, they are corresponding and congruent.
$\mathrm{o}<\mathrm{D}$ matches $<\mathrm{H}$, they are corresponding and congruent.

