\qquad

Reteaching Page
 8.5 Indirect Measurement

Did you ever wonder how tall a building, tree or flagpole was? You can use shadows to create similar figures and figure out their heights using a mathematical concept called indirect measurement.

Indirect measurement uses similar triangles and proportions to find lengths. The sun's angle causes the angle formed by you and your shadow to be congruent to the angle formed by the object you want to measure and its shadow.

You are 5 feet tall and cast a shadow of 3 feet.
 The tree is \boldsymbol{n} feet tall and casts a shadow 30 feet.

The proportion 5 is to 3 as \boldsymbol{n} is to 30 will be true!
$\frac{5 \text { feet tall }}{3 \text { foot shadow }}=\frac{\boldsymbol{n} \text { feet tall }}{30 \text { foot shadow }}$

$$
\frac{5}{3}=\frac{\mathrm{n}}{30} \quad \begin{aligned}
& \text { Use the "Stoney Method" to solve! } \\
& 5 * 30 \div 3=50 \text { feet tall }
\end{aligned}
$$

Let's find some heights using indirect measurement. We will pretend that all of you are exactly 54 inches tall and are casting a 36 inch shadow. Be careful to convert your answers properly - nobody wants to know how many inches tall a tree is!!

You measure the shadow of a tree in your yard and it is 576 " long.
$\frac{36 \text { in shadow }}{54 \text { inch object }}=\frac{576 \text { inch shadow }}{n \text { inches object }}$
$54 * 576=$ \qquad $\div 36=$ \qquad inches object
\qquad inches object $\div 12=$ \qquad feet tall

The tree is \qquad feet tall!

$$
1
$$

$$
2
$$

The shadow on the Statue of Liberty is 1200 " long.

The Statue of Liberty is \qquad feet tall. The flag pole is \qquad feet tall.

