\qquad

Reteaching Page

9.5 - Subtracting Integers

Rewrite any integer subtraction problem as an addition problem!

Then, to add integers use a number line or use the rule.

Rewriting subtraction problems.

$8-4$ is the same as $8+(-4)$. Use a number line to prove it!
When you reverse the subtraction sign, you reverse the sign of the subtrahend.
$9-6=9+(-6)$
Notice that we switched the subtraction to addition, then switched the 6 to negative 6 .
$-5-(-4)=-5+4$
We switched subtraction to addition then switched negative 4 to +4 !

Rewrite the following subtraction problems as addition.

$2-8=$ \qquad $8-8=$ \qquad
$-2-(-6)=$ \qquad

$$
-7-3=
$$

\qquad

Using a number line.

1. Rewrite the subtraction problem as addition.
2. Positives move to the right.
3. Negatives move to the left.
-3-5 = \qquad (please rewrite the problem as addition)

$-3-5=-8$

Use the rule.

1. Rewrite the subtraction problem as addition.
2. Same Signs - When the signs are the same add the absolute values and assign the sign.
3. Different Signs - When the signs are the different subtract the absolute values and assign the sign of the greatest absolute value.
$-42-18=-42+(-18)$
Same Signs \rightarrow add $\rightarrow 42+18=60 \rightarrow$ assign the sign $(-) \rightarrow-42-18=-60$
$(-15)-(-39)=-15+39$
Different Signs \rightarrow subtract
\rightarrow 39-15 = $24 \rightarrow+39$ had the greatest absolute value so we assign the $\operatorname{sign}(+) \rightarrow(-15)-(-39)=24$
